Geometric mean flows and the Cartan barycenter on the Wasserstein space over positive definite matrices

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wasserstein Riemannian Geometry of Positive-definite Matrices∗

The Wasserstein distance on multivariate non-degenerate Gaussian densities is a Riemannian distance. After reviewing the properties of the distance and the metric geodesic, we derive an explicit form of the Riemannian metrics on positive-definite matrices and compute its tensor form with respect to the trace scalar product. The tensor is a matrix, which is the solution of a Lyapunov equation. W...

متن کامل

A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices

In this paper we introduce metric-based means for the space of positive-definite matrices. The mean associated with the Euclidean metric of the ambient space is the usual arithmetic mean. The mean associated with the Riemannian metric corresponds to the geometric mean. We discuss some invariance properties of the Riemannian mean and we use differential geometric tools to give a characterization...

متن کامل

Conic Geometric Optimization on the Manifold of Positive Definite Matrices

We develop geometric optimisation on the manifold of hermitian positive definite (hpd) matrices. In particular, we consider optimising two types of cost functions: (i) geodesically convex (g-convex); and (ii) log-nonexpansive (LN). G-convex functions are nonconvex in the usual euclidean sense, but convex along the manifold and thus allow global optimisation. LN functions may fail to be even g-c...

متن کامل

Geometric optimisation on positive definite matrices for elliptically contoured distributions

Hermitian positive definite (hpd) matrices recur throughout machine learning, statistics, and optimisation. This paper develops (conic) geometric optimisation on the cone of hpd matrices, which allows us to globally optimise a large class of nonconvex functions of hpd matrices. Specifically, we first use the Riemannian manifold structure of the hpd cone for studying functions that are nonconvex...

متن کامل

Consistent estimation of a population barycenter in the Wasserstein space

We define a notion of barycenter for random probability measures in the Wasserstein space. We study the population barycenter in terms of existence and uniqueness. Using a duality argument, we give a precise characterization of the population barycenter for compactly supported measures, and we make a connection between averaging in the Wasserstein space and taking the expectation of optimal tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2017

ISSN: 0024-3795

DOI: 10.1016/j.laa.2017.07.017